Further Mechanics Multiple Choice

1. Which one of the following statements is not true for a body vibrating in simple harmonic motion when damping is present?

A The damping force is always in the opposite direction to the velocity.
B The damping force is always in the opposite direction to the displacement.
C The presence of damping gradually reduces the maximum potential energy of the system.
D The presence of damping gradually reduces the maximum kinetic energy of the system.
2. The time period of a simple pendulum is doubled when the length of the pendulum is increased by 3.0 m . What is the original length of the pendulum?

A $\quad 1.0 \mathrm{~m}$
B $\quad 1.5 \mathrm{~m}$
C $\quad 3.0 \mathrm{~m}$
D $\quad 6.0 \mathrm{~m}$
3. A body moves with simple harmonic motion of amplitude 0.50 m and period 4π seconds.

What is the speed of the body when the displacement of the body from the equilibrium position is 0.30 m ?

A $\quad 0.10 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 0.15 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 0.20 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 0.40 \mathrm{~m} \mathrm{~s}^{-1}$
(Total 1 mark)
4. A particle of mass m moves horizontally at constant speed v along the arc of a circle from P_{1} to P_{2} under the action of a force. What is the work done on the particle by the force during this displacement?

A zero
B $\frac{\pi m v^{2}}{2}$
C $m v^{2} \sqrt{2}$
D $2 m v^{2}$

A model car moves in a circular path of radius 0.8 m at an angular speed of $\frac{\pi}{2} \mathrm{rad} \mathrm{s}^{-1}$. What is its displacement from point $\mathrm{P}, 6 \mathrm{~s}$ after passing P ?

A zero
B $\quad 1.6 \mathrm{~m}$

C $\quad 0.4 \pi \mathrm{~m}$
D $\quad 1.6 \pi \mathrm{~m}$
(Total 1 mark)
6. What is the value of the angular velocity of a point on the surface of the Earth?

A $\quad 1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
C $\quad 2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
D $\quad 4.6 \times 10^{2} \mathrm{rad} \mathrm{s}^{-1}$
7. The rate of change of momentum of a body falling freely under gravity is equal to its

A weight.
B power.
C kinetic energy.
D potential energy.
8. A particle of mass m strikes a rigid wall perpendicularly from the left with velocity v.

If the collision is perfectly elastic, the change in momentum of the particle which occurs as a result of the collision is

A $2 m v$ to the right.
B $2 m v$ to the left.
C $m v$ to the left.
D zero.
(Total 1 mark)

1. B
2. A
3. C
4. A
5. B
6. B
7. A
8. B
